
FPGA, ASICs, and CPU: When
to Use What, Why, and How

Bryce L. Meyer
brycemeyer@att.net

19 March 2020

Outline
• History of Logic

• Logic Gates 101

• Tradeoffs and Usage
• Matrix of Integrated Circuits

• FPGAs: Who makes them for what?
• HDLs: VHDL and Verilog
• Quartus 101
• Alterra BeMicro10 Test Kit

History of Logic:1800’s

• 19th Century: Electromechanical Switches
• Switches had to be physically moved to connect
• 0=off, 1=on

• Add in the Electromagnet Coil: Wire wraps around an iron core.
• Power on=magnetic.

• Combined with springs and contacts: One switch can throw another, even bigger switch
• This is how the telegraph and relays worked….eventually telephones

Battery

0

Battery

1

Battery 0
Battery

0

Battery 1
Battery

1

Note: ideally you
might design to
isolate from core,
but not here…

History of Logic:19th Century: Electromechanical Circuits
• Complex structures allow a variety of switch-logic structures
• You can describe the function of each in language and in tables Battery

0
Battery

1

Note:
Wiring below
simplified to show
gate logic….

INPUT OUTPUT
A B Q
0 0 0
1 0 1
0 1 1
1 1 0

B=0

Q=0A=0

B=0

Q=1A=1

B=1

Q=1A=0

B=1

Q=0A=1

If exclusively A or B is on, Q is on, but
if A and B are on, or A and B are off,
then Q is off

Gate Type:
XOR (Exclusive Or)

History of Logic:19th Century: Electromechanical Circuits

• Lots of other switch types emerged fyi… Battery

0
Battery

1

Note:
Wiring below simplified
to show gate logic….

B=1

Q1=0

Q2=1

A=1

B=0

A=1
Q1=1

Q2=0

B=1

Q1=0

Q2=1

A=1

B=0

A=1
Q1=1

Q2=0

Relay
Flip Flop…

Standardized Logic

• Logic theory (discrete math) discovered by many cultures in antiquity
refined into equations in the 18th century gained a physical reality in
the switches (see prior slides)

• As a result in the 19-20th centuries the language of logic as
standardized, in common gate types to allow mass production

https://en.wikipedia.org/wiki/Mathematical_logichttps://en.wikipedia.org/wiki/Logic_gate#Symbols

AND
OR

NOT

EXCLUSIVE

Simple Symbols

Buffer
(i.e. YES)

Modifier Symbols
Combined Symbols

NAND

NOR

XOR
XNOR

NOT

https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Logic_gate#Symbols

Logic
Gates
101

https://en.wikipedia.org/wiki/Logic_gateSee: ANSI/IEEE 91 (and 91A)

A

B
Q

0

0

0 A

B
Q

1

1

1 A

B
Q

0

1

1 A

B
Q

1

0

1

A

B
Q

0

0

1 A

B
Q

1

1

1 A

B
Q

0

1

0 A

B
Q

1

0

0
AND

OR

A

B
Q

0

0

1 A

B
Q

1

1

0 A

B
Q

0

1

1 A

B
Q

1

0

1
NAND

A

B
Q

0

0

1 A

B
Q

1

1

0 A

B
Q

0

1

0 A

B
Q

1

0

0
NOR

A

B
Q

0

0

0 A

B
Q

1

1

0 A

B
Q

0

1

1 A

B
Q

1

0

1
XOR

A

B
Q

0

0

1 A

B
Q

1

1

1 A

B
Q

0

1

0 A

B
Q

1

0

0XNOR
INPUT OUTPUT

A B Q

0 0 1

0 1 0

1 0 0

1 1 1

INPUT OUTPUT

A B Q

0 0 1

0 1 0

1 0 0

1 1 1

INPUT OUTPUT

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

INPUT OUTPUT

A B Q

0 0 1

0 1 1

1 0 1

1 1 0

INPUT OUTPUT

A B Q

0 0 1

0 1 0

1 0 0

1 1 0

INPUT OUTPUT

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

https://en.wikipedia.org/wiki/Logic_gate

Crossbar Switches
• Crossbar switches are arrays of electro-mechanical switches, to allow

many things to link to many other things…emerged with telephone
networks.

• Linking grid of wires are pulled or pushed to connect to other wires

https://en.wikipedia.org/wiki/Crossbar_switch

A1 A2 A3 A4

B4
B3

B2
B1

A1 is
connected to
B1 because
switch A1-B1
is on
A2 connected
to B2 because
switch A2-B2
is on.
Rest all off.

ON

ON

https://en.wikipedia.org/wiki/Crossbar_switch

History of Logic: Vacuum Tubes

• Vacuum Tubes allow the same kinds of functions and gates as the
electro-mechanical switches, but without sparking and physical
movement.

• Combinations of Tubes can be made into standard gates.
• First Computers used vacuum tubes

https://en.wikipedia.org/wiki/Vacuum_tube

https://en.wikipedia.org/wiki/Vacuum_tube

History of Logic: Transistors
• 1926-1956: Transistors developed and patented.
• A Transistor is a solid state (i.e. no vacuum) component that is

essentially a switch for our context (yes, more complicated then that
but here, a switch)

• Combinations of transistors result in logic gates

https://en.wikipedia.org/wiki/Transistor

Input

Power

Output

A

B

Q

Power

AND

https://en.wikipedia.org/wiki/Transistor

Clocks and Timing

• Solid-State Clock signals were originally piezoelectric crystals
that oscillated at a standard rate.

• If the clock ‘ticks’, an accumulator circuit can count the ticks to tell
how much time has elapsed since switched on

• Ticks can trigger switches on or off

• Capacitors charge and discharge at a known amount of time
• Can be used to provide a delay signal, i.e. switch on or off after a

certain time

• Combinations provide system time for logic functions

A
(1=“tick”
0=“tock”)

B

Q

Power

Q=on if B=on
and A=tick

Tick

Tock
timevo

lts

Integrated Circuits
• In the 1960’s+ Combinations of Transistors and other parts could be

combined on a single chip.
• If the chip is made to accept a language of instructions then provide a variety

of responses, for general purposes you get the CPU (Central Processing Unit).
• If the chip is crafted to take a specific set of inputs, discrete or in language,

then output a specific set of responses, optimized for a specific purpose you
get ASICs (Application Specific Integrated Circuits).

• GPU (Graphics Processing Units) are both: They are optimized for vector
graphics computation, but take a variety of inputs to get a variety of outputs

• Field Programmable Gate Arrays (FPGAs) Fall in between CPUs and ASICs, sort
of.

What are CPUs, ASICs, FPGAs
• Central Processing Unit or CPU (in this sense, a microprocessor chip

like a Intel Core i7)
• Programmable using common languages, which are compiled or

interpreted into instructions, which are then computed into outputs
• Benefits: Versatile
• Costs: Speed and complexity of instruction software

• Application Specific Integrated Circuits or ASICs
• Etched or photolithographed to have the logic needed for a specific task.

Simple input instruction set. Once made, response to instructions is
invariant but fast.

• Benefits: Speed and simplicity of instructions
• Costs: Fixed behavior (Not Versatile), time to develop the circuit.

• Field Programmable Gate Arrays or FPGAs
• Has a simple instruction set and response like an ASIC, BUT its logic can be

reconfigured using a description language. Often used to prototype ASICs.
• Benefits: Versatility, Some of the speed of ASICs, simple instructions once

logic is set
• Costs: Complexity to describe logic, loss of speed compared to ASICs.

• N.B. Most modern ASICs and FPGAs have some complex features
borrowed from CPUs

Note:
FPGAs are
used to
prototype
ASIC
designs!

Logic Gates

• In CPUs and ASICs the gates are the fixed, behavior is dictated by inputs only. CPUs have far more
gates.

• To how a CPU behaves with the same inputs, just change the software.
• To change how an ASIC behaves with the same inputs, it requires a change in hardware.
• In FPGAs, instructions (in Hardware Description Language, HDL) can

change the gates (as A changes to B), so the same inputs in A and B,
provide different outputs from A as in B.

• The hardware is the same, but special gates, in a logical crossbar structure,
allow changes in behavior dictated by the HDL commands.

1
1
1

0
1
1 IF inputs are the same, 0 , else 1

IF inputs are different , 1 else 0

IF both 1, then 1, else 01
1
1

0
0
1

Gate Structure A

Gate Structure B

0

0

1

1

1

0

0

1

1

0

FPGA Top level

a1 q1
Switch (Gate) Fabric

(Adaptive Logic Module
(ALM))

(i.e. like a crossbar
switch)

ROM RAM
(Registers)

Persistent
RAM Clocks

IN
PU

TS

O
U

TP
U

TS
Power, Control, etc.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf

The Logic Module is configured by Hardware
Description Language (HDL)
It can be parsed into Look Up Tables (LUTs) of various
sizes. These correspond to the gate structure
implemented inside the fabric for each input.

The bigger the LUTs, the slower the performance

Inputs Outputs

a1 a2 b1 q1 q2

0 1 1 0 1

1 0 0 1 0

0 0 1 0 0

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf

FPGA: How does it work?
• To Implement the switch architecture, the switches can be these

types:
• SRAM based: Static RAM cells make up each gate. Programming in each cell

determines gate structure, switch, etc. POWER OFF=ERASED (but can be
reprogrammed).

• Antifuse: Antifuse CMOS(Complementary metal–oxide–semiconductor) for
each switch cell…WORM. i.e. you write it once, then it keeps the architecture
power or not, but cannot be reprogrammed.

• Flash RAM: Uses flash memory cells for each gate/switch. Persists when
powered off, and can be reprogrammed.

• Groups of gates/switchs are aggregated into Logic Modules, each with
LUTs (Look Up Tables, i.e. Truth Tables)

https://www.electronicdesign.com/technologies/fpgas/article/21801527/the-principles-of-fpgas

https://www.electronicdesign.com/technologies/fpgas/article/21801527/the-principles-of-fpgas

Side Benefit of FPGA: No Persistence

• Originally, FPGAs had no persistence (i.e. SRAM).
• I.e. Loss of power erases switch architecture

• Very useful if you don’t want someone to know how your algorithms
work, and need fast performance

• As a result, FPGAs became very useful in battlefield systems on the
front line or in weapons.

• Modern FPGAs however, often have a bit of Flash memory that can
persist the switch architecture (i.e. store the compiled HDL), or use
Antifuse or Flash technologies.

CPU vs ASIC vs FPGA

CPU ASICFPGA

CPU ASICFPGA

CPU ASIC

FPGA
SOFTWARE ELECTRICAL

CPU ASIC

ENGINEERING TYPE
FPGA

CPUs have a high
degree of
versatility, limited
mostly by
programmer skill,
But take longer to
make decisions
(i.e. gate)
And have high
instruction
complexity (i.e.
software).
Changes are
simply changes in
sopftware.

ASICs have high
performance, and
simple inputs, but are
limited to the
designed purpose only.
Most changes result in
new hardware.

FPGAs have almost the
same performance as
ASICs, and have
flexibility, but require
more complex
instructions, and are
more expensive then
ASICs or CPUs for the
same purposes.
Some changes are
simply HDL changes.

CPU vs ASIC vs FPGA:
Development 1
• CPU:

• Specify need then buy chips or whole boards/processing system.
• Software Engineering Process
• Compile or Interpret  Instruct  Calculate  Format  Output

• ASIC:
• Circuit Engineering Process then build or buy circuits
• Build = Burn, Etch i.e. implement purpose in hardware
• (Compile or Interpret)Instruct  Output

• FPGA
• Circuit Engineering Process + Describe Circuit Change Logic (in HDL, similar to a

Software Engineering Process)
• (Compile or Interpret)Instruct  Output then Change(Compile or

Interpret)Instruct  Output
• HAS THE ABILITY TO WIPE, and is not reverse engineerable like an ASIC

Process
• CPUs: Once a processor is selected, Software Engineering is the

dominant concern. Processor is static.
• ASICs: Circuit Engineering and Circuit building, and simplified

instruction set design (I.e. simplified software Engineering) are
core elements. Testing and redesign of the circuit, with costs to
rebuild the circuit, are key. ASIC hardware may be rebuilt many
times (incurring costs, reduced somewhat using simulation).

• FPGAs: Circuit Engineering and Software Engineering on two
areas: Circuit Description and Instruction set design. FPGAs can
shift circuit design quickly and cheaply in each test cycle since the
Processor hardware is static (as in CPUs), though its logical circuit
is changed. A core trade is if the instruction set is reloaded to the
FPGA (assuming NOT CMOS)

https://www.intel.com/content/www/us/en/products/program
mable/fpga/new-to-fpgas/resource-center/overview.html

https://www.intel.com/content/www/us/en/products/programmable/fpga/new-to-fpgas/resource-center/overview.html

Developing for an FPGA
• FPGAs have two software trains:

• FPGA Circuit Design
• Circuit (Hardware) Description Language that results in the

configuration appropriate for the system software.
• This skill set is mostly electrical engineering, with software

practices and circuit practices
• System Software Design

• i.e. the software that will run using FPGA Components, CPU
components, and ASICs combined in the system.

• These components need to follow the organizational software
process.

• Remaining components follow the software
engineering process for the organization.

High level process to use an FPGA

System Design
Documents and

Reviews

System Req.
System Spec

Circuit Design Doc.
FPGA Circuit Designs

and Conditions FPGA Circuit HDL

Code Review: HDL

Instruction on Chip
Tests

Software Design Docs.
And Reviews

FGPA Run-time Instruction
Set (or pre-compile

software)
reviews

Software Design in
Code

Software Code
Reviews

System Tests

Compile and push

Software Test Events

Complete System
Assembly

HDLs: VHDL vs Verilog

https://en.wikipedia.org/wiki/VHDL https://en.wikipedia.org/wiki/Verilog

Inputs Outputs

a b q

1 0 0

0 1 0

1 1 1

-- (this is a VHDL comment)

-- import std_logic from the IEEE library

library IEEE;

use IEEE.std_logic_1164.all;

entity ANDGATE is

port (

A : in std_logic;

B : in std_logic;

Q : out std_logic);

end entity ANDGATE;

architecture RTL of ANDGATE is

begin

Q <= A and B;

end architecture RTL;

module andgate (a, b, q);
input a, b;
output q;
assign q = a & b;
endmodule

VHDL

Verilog

https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/Verilog

Quartus
• Quartus (Prime) is an Intel package that allows graphical design for

FPGAs, runs on LINUX and Windows.
• Made by Intel, 3 Versions: Intel® Quartus® Prime Lite Edition (free), Intel®

Quartus® Prime Standard Edition (paid), Intel® Quartus® Prime Pro Edition
(paid, most expensive version).

• Lite version supports most early versions of FPGAs, but is very limited in
analysis and how it can push to the FPGA board.

• Alterra MAX10 is supported in Lite
• Need at least 1GB RAM, 50GB Drive space….recommend some sporty graphics processors!

• The pay versions have most modern FPGAs, and supports troubleshooting
and push functions.

• There is a very good course in Coursera…if you want to use Quartus do the
trial course…

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html

https://fpgasoftware.intel.com/?edition=lite https://fpgasoftware.intel.com/requirements/19.1/

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://fpgasoftware.intel.com/?edition=lite
https://fpgasoftware.intel.com/requirements/19.1/

Using Quartus
• Step 1: Make sure your FPGA board and version is

supported.
• Download Module if needed
• Make sure it works!!!!

• Step 2: Graphically Design Circuit
• Define details like timing, truth tables, etc. in

various windows
• Save as a project.

• Step 3: Run Test and Compile
• Pick hardware to run against and compile for.
• Set parameters particular to hardware

• Step 4: Test Timing against simulated FPGA
• Step 5: Optimize and retest
• Step 6: Produce HDL
• Step 7: Push to your board
• Step 8: Test in real world
• Step 9: Fix is needed

https://www.intel.com/content/www/us/en/programmable/pr
oducts/design-software/fpga-design/quartus-prime/user-
guides.html

https://www.intel.com/content/www/us/en/programmable/do
cumentation/yoq1529444104707.html

Ref: Intel® Quartus® Prime Standard Edition User Guide Design Optimization
Updated for Intel® Quartus® Prime Design Suite: 18.1 UG-20177 | 2018.11.12

https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/user-guides.html
https://www.intel.com/content/www/us/en/programmable/documentation/yoq1529444104707.html

Schematic View
• Works a lot like Visio or other

CAD packages in Schematic View
• Chip Diagram is on screen, drag

and drop parts like: gates, tables,
registers, timers, accumulators etc.

• Use connectors to wire up inputs
and outputs

Ref: Intel® Quartus® Prime Standard Edition User Guide Design Optimization
Updated for Intel® Quartus® Prime Design Suite: 18.1 UG-20177 | 2018.11.12

Other Views

• State Machine examines network and
timing, truth tables, and overall math
model

• Brid’s Eye view get you the whole
Schematic

• Chip View show schematic for you intended
target if you loaded the library

• RTL (Register Transfer Level) Viewer in
Netlist Viewer: Shows how the model
looks logically for variables (registers) and
how they are connected in language

Ref: Intel® Quartus® Prime Standard Edition User Guide Design Optimization
Updated for Intel® Quartus® Prime Design Suite: 18.1 UG-20177 | 2018.11.12

Timing and optimization
• Several timing tools are in Quartus, including critical path time

calculators…i.e. where are you wasting latency..
• Requires the Chip Planner to be up for your chip.
• Also looks at resource utilization and other criteria

Alterra MAX10
• Inexpensive FPGA board for learning FPGAs

https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/max-10-fpga-
development-kit.html

https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-max-10-
evaluation.html

https://www.intel.com/content/dam/altera-www/global/en_US/support/boards-kits/max10_dk_schematic_revB_pcb.pdf

https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/max-10-fpga-development-kit.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-max-10-evaluation.html
https://www.intel.com/content/dam/altera-www/global/en_US/support/boards-kits/max10_dk_schematic_revB_pcb.pdf

BeMicroMAX10

USB powered and
interfaced
Can be plugged into other
boards, extended using
pinouts
~$30.00

https://www.arrow.com/en/products/bemicromax10/arrow-development-tools

https://www.arrow.com/en/products/bemicromax10/arrow-development-tools

Synopsis and Links
This preso will cover the basics of what are Field Programmable Gate Arrays (FPGAs), past and current, when to use them versus
ASICs (Application Specific Circuits) and CPUs/GPUs, and a show and tell on the Alterra BeMicro10 and a little on Quartus and HDLs
(VHDL, Verilog) to program them.

An FPGA is a series of circuits that can be configured using a description language, then used as if they were burned for that use (as
ASICs are), in lieu of CPUs which are full burned in but need software to run. FPGAs are often used to prototype circuitry before
burning ASICs, used to test timing in real-time systems, or make one time use circuits, or used in systems that are configured, then
'forget' themselves if captured or lost (as in battlefield systems).

A few references (more in slides).

https://en.wikipedia.org/wiki/Field-programmable_gate_array

https://en.wikipedia.org/wiki/Application-specific_integrated_circuit

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html

https://en.wikipedia.org/wiki/VHDL

https://en.wikipedia.org/wiki/Verilog

https://numato.com/blog/differences-between-fpga-and-asics/

https://www.arrow.com/en/products/bemicromax10/arrow-development-tools#page-1

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/Verilog
https://numato.com/blog/differences-between-fpga-and-asics/
https://www.arrow.com/en/products/bemicromax10/arrow-development-tools#page-1

	FPGA, ASICs, and CPU: When to Use What, Why, and How
	Outline
	History of Logic:1800’s
	History of Logic:19th Century: Electromechanical Circuits
	History of Logic:19th Century: Electromechanical Circuits
	Standardized Logic
	Logic Gates 101
	Crossbar Switches
	History of Logic: Vacuum Tubes
	History of Logic: Transistors
	Clocks and Timing
	Integrated Circuits
	What are CPUs, ASICs, FPGAs
	Logic Gates
	FPGA Top level
	FPGA: How does it work?
	Side Benefit of FPGA: No Persistence
	CPU vs ASIC vs FPGA
	CPU vs ASIC vs FPGA:�Development 1
	Process
	Developing for an FPGA
	High level process to use an FPGA
	HDLs: VHDL vs Verilog
	Quartus
	Using Quartus
	Schematic View
	Other Views
	Timing and optimization
	Alterra MAX10
	BeMicroMAX10
	Synopsis and Links

